TEACHING PLANS CHEMISTRY GENERIC ELECTIVE COURSE

Under CBCS syllabus

Semester – I (Year 2020-21 onwards) Core Course: CHEMISTRY-1 Paper Code: CHM-GE 1016

No. of Hours per Week		Total No. of Hours	Marks
6	04 (Theory)	60	75 (Theory)
4	02 (Practical)	30	25 (Practical)

Course Objectives: This course aims at giving students theoretical understanding about the basic constituents of matter – atoms, ions and molecules in terms of their electronic structure and reactivity. Structure and bonding in/of these are to be dealt with basic quantum chemistry treatment. Reactivity of chemical species based on their electron transfer affinity is introduced. Further, The organic chemistry part contains fundamental of Organic Chemistry, stereochemistry and aliphatic hydrocarbon.

Course Learning Outcomes: On successful completion, students would have clear understanding of the concepts related to atomic and molecular structure, chemical bonding, Students are expected to learn basic ideas used in organic Chemistry, stereochemistry functional group, Alkanes, Alkenes, Alkynes etc.

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
	1	Bohr's theory, its limitations and atomic spectrum of hydrogen atom	2	The students will be exposed to the Postulates of Bohr's model of atoms and its limitation	Lecture/ Discussion/ PPT/ Demonstration/ Practical	

SECTION-A : INORGANIC CHEMISTRY-1

	2	de-Broglie wave equation, Heisenberg's Uncertainty Principle and its significance, Schrodinger wave	3	The students will understand about the wave mechanics, the importance of Heisenberg's Uncertainty Principle	Lecture/ Discussion/ PPT/ Demonstration/ Practical	ıp Discussion/
Atomic Structure	3	Quantum numbers and their significances	3	The students get exposed to the different energy, orbitals in which electron belongs to	Lecture/ Discussion/ PPT/ Demonstration/ Practical	test / Seminar/ Grou Q & A Session/ Assignment
	4	Hund's rule, Pauli exclusion principle, Aufbau's Principle	2	The students will get knowledge about principle for the distribution of electrons in the atom	Lecture/ Discussion/ PPT/ Demonstration/ Practical	Quiz/Class

Unit	Section	Торіс	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
	1	Valence bond	3	The students	Lecture/	
		Theory and its		will be able to	discussion/	
		limitations,		know about the	PPT	
		hybridization		bonding and		
				hybridization of		
				different		
				compounds		
	2	VSEPR Theory and	3	The students	Lecture/	ent
		shapes of different		will understand	discussion/	un
		molecules		the shape and	PPT	igi
ng				bond pair and		Ass
ipu				lone pair of		ar/.
Bo				electrons		nin
al				present on		Sen
nic				central atom		st/S
hei	3	Molecular Orbital	3	The students	Lecture/	; te
Ŭ		Theory		will get the	discussion/	ass
				knowledge	PPT	/CI
				about the		uiz
				bonding and		ð
				electronic		
				configuration,		
				bond order,		
				bond length,		
				bond strength of		
				covalent		
				molecules		

and Vander Waal's interaction

SECTION-B: ORGANIC CHEMISTRY-1

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment Evaluation
Jrganic Chemistry	1	Electronic Displacement	3	The students will get able to know about the Inductive effect, Electromeric effect, Resonance and Hyper conjugation	Lecture/ discussion/ PPT	
	2	Reaction Intermediates	2	The students will understand the carbocation, carbanion, free radicals and their types	Lecture/ discussion/ PPT	lent
damentals of	3	Cleavage of covalent bond	2	The students will be able to know about the homolytic and heterolytic cleavage	Lecture/ discussion/ PPT	ninar/Assignm
Fund	4	Nucleophiles and electrophiles	3	The students will get the knowledge of the definitions of Nucleophiles and electrophiles and their difference and reactions	Lecture/ discussion/ PPT	Quiz/Class test/Semi
lemistry	1	Different projection formulae and their interconversion	2	The students will be exposed to the different Fischer, Newmann and Sawhorse model formulae	Lecture/ Discussion/ PPT/ Demonstra tion	
Stereoch	2	Geometrical isomerism	2	The students will understand the process of different types of isomerism, their applications	Lecture/ Discussion/ PPT/ Demonstra tion	

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
	1	Chemistry of alkanes	3	The students will be exposed to the preparation of alkanes, reactions	Lecture/ Discussion/ PPT/ Demonstration/ Practical	iscussion/
liphatic Hydrocarbons	2	Chemistry of alkene	3	The students will understand the process of preparation, reactions of alkenes and their name reactions	Lecture/ Discussion/ PPT/ Demonstration/ Practical	s test / Seminar/ Group D Q & A Session/ Assignment
	3	Alkynes	3	The students get exposed to the different reactions of alkyne ,their acidity and type	Lecture/ Discussion/ PPT/ Demonstration/ Practical	Quiz/Clas

Recommended Books:

1. J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S.

- 2. F. A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley.
- 3. Douglas, McDaniel and Alexader: Concepts and Models in Inorganic Chemistry, John Wiley.

4. James E. Huheey, Ellen Keiter and Richard Keiter: Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Publication.

- 5. T. W. Graham Solomon: Organic Chemistry, John Wiley and Sons.
- 6. Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.
- 7. E. L. Eliel: Stereochemistry of Carbon Compounds, Tata McGraw Hill.
- 8. I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
- 9. R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall.
- 10. Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand

Course Teachers:

- 1. Dr. M. Phalguni Singh
- 2. Dr. N. Ranita Devi
- 3. Dr. K. Inaomacha Singh
- 3. N. Surjit Singh

HOD.....

Semester – II (Year 2020-21 onwards) Core Course: CHEMISTRY-2 Paper Code: CHM-GE 2016

No. of Hours per Week	Credits	Total No. of Hours	Marks
6	04 (Theory)	60	75 (Theory)
4	02 (Practical)	30	25 (Practical)

Course Objectives: This course may be divided into two broad parts-inorganic and physical chemistry. Three units-main group elements and transition elements will be taught in the inorganic chemistry part. The physical chemistry part contains states of matter.

Course Learning Outcomes: After completion of this course the students will learn periodic properties in main group elements, transition metals (3d series). In physical chemistry part, the students are expected to learn kinetic theory of gases, ideal gas and real gases, surface tension, viscosity and basic solid state chemistry.

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessmen
			nours			Evaluation
ck elements	1	s-block elements	3	The students will be able to know about the electronic configuration, size, I.E, electro-negativity, allotropes, oxidation states of Gr1 and Gr-2 elements	Lecture, discussion	minar/Assignment
s- and p-blo	2	p-block elements	4	The students will be able to know about the electronic configuration, size, I.E, electronegativity, allotropes, oxidation of different groups of p- block elements	Lecture, discussion	Quiz/Class test/Se

SECTION-A : INORGANIC CHEMISTRY-2

3	Inert pair effect and	2	The students will be	Lecture,
	diagonal		able to know about the	discussion
	relationship		similarity of elements	
			which have diagonal	
			relationship and	
			oxidation state due to	
			inert pair effect	
4	Anomalous	2	The students will	Lecture,
	behaviour of first		beable to know the	discussion
	member of each		difference of first	
	group		element of each group	
			from the remaining	
			elements	

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
ansition elements	1	Electronic configuration and valency of transition elements	3	The students will get an idea about the electronic configuration of various transition elements	Lecture, discussion	signment
	2	Properties of transition elements	3	The students will be able to know about the colour formation, magnetic and catalytic properties of various transition elements	Lecture, discussion	ss test/Seminar/As
L	3	Complex formation and stability of oxidation state of transition metals	2	The students will be able to know about the Complex formation and stability of oxidation state of transition metals	Lecture, discussion	Quiz/Cla

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
Co-ordination Chemistry	1	Coordination Chemistry & Drawback of VBT	4	On successful completion, students will be able to name coordination compounds according to IUPAC, explain bonding in this class of compounds, understand their various properties in terms of CFSE and predict reactivity.	Lecture, discussion and exercise	Quiz/Class test/Seminar/Assignment

SECTION B: PHYSICAL CHEMISTRY-2

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
of Gases	1	Kinetic molecular model of a gas, postulates and derivation of the kinetic gas equation	4	The students will be able to understands the collision frequency; collision diameter; mean free path and viscosity of gases, relation between mean free path and coefficient of viscosity	Lecture/ Discussion/ PPT	minar/ Group Discussion/ A Session/ signment
Kinetic Theory	2	Behaviour of real gases, Deviations from ideal gas behaviour	4	The students will have an idea of compressibility factor, causes of deviation from ideal behaviour. Van der Waals equation of state, virial equation of state.	Lecture/ Discussion/ PPT	Quiz/Class test / Se Q & As

temperature and addition of various solutes on surface tension and

Unit	Section	Tonic	Lecture	Learning	Pedagogy	Assessment/
Omt	Chit Section		hours	outcome	1 cuagogy	Evaluation
	1	Elementary ideas of symmetry, symmetry elements and symmetry operations	2	Students will learn the elementary ideas of symmetry, symmetry elements and symmetry operations	Lecture/ Discussion/ PPT/	
Solids	2	Forms of solids, law of constancy of interfacial angles, law of rational indices, Miller indices, Bragg's law, Analysis of powder diffraction patterns	3	Students will learn the solid state, law of constancy of interfacial angles, rational indices, Miller indices; X-ray diffraction	Lecture/ Discussion/ PPT/	ninar/ Group Discussion/ A Session/ gnment
Chemical Kinetics	1	Reaction Rates, Orders of reactions, Half-life of reaction & Theories of reaction rates	5	Students will learn concept of reaction rates, Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second orders reactions. Collision theory and Activated Complex theory of bimolecular reactions.	Lecture/ Discussion/ PPT/ Practical	Quiz/Class test / Serr Q & A Assi

Reference Books:

- 1. Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
- 2. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).

3. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt. Ltd., New Delhi (2009).

Pvt. Ltd., New Delm (2009).

- 4. Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
- 5. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).
- 6. Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
- 7. Shriver, D.F. & Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 8. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.
- 9. Rodgers, G.E. Inorganic & Solid State Chemistry, Cengage Learning India Ltd., 2008

Course Teachers:

- 1. Dr. M. Phalguni Singh
- 2. Dr N. Ranita Devi
- 3. M. Lokendro Singh
- 4. Dr K. Gayatri Sharma

HOD.....

Semester – III (Year 2021-22 onwards) Core Course: CHEMISTRY-3 Paper Code: CHM-GE-3016

No. of Hours per Week	Credits	Total No. of Hours	Marks
6	04 (Theory)	60	75 (Theory)
4	02 (Practical)	30	25 (Practical)

Course Objective: This course contains two broad parts- physical and organic chemistry. In physical chemistry part the students will be taught chemical energetics, 13 chemical equilibrium and ionic equilibrium. In organic chemistry part, the students will be introduced to different classes of organic compounds.

Learning Outcome: After completion of this course the students will able to understand the chemical system from thermodynamic points of view. They will also learn two very important topics in chemistry- chemical equilibrium and ionic equilibrium. In organic chemistry part, the students are expected to learn various classes of organic molecules-alkyl halides, aryl halides, alcohols, phenols, ethers, aldehydes and ketones.

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Chemical Energetics	1	Review of thermodynamics and laws of Thermodynamics	8	The students will be able to understands - the important principles, definitions of thermochemistry Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution Calculation of bond energy, resonance energy from thermochemical data Kirchhoff's equation, calculation of absolute entropies of substances.	Lecture/ Discussion/ PPT/	Quiz/Class test / Seminar/ Group Discussion/ Q & A Session/ Assignment

SECTION-A: PHYSICAL CHEMISTRY-3

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Equilibrium	1	Free energy change in a chemical reaction, thermodynamic derivation of law of chemical equilibrium, Le Chatelier's Principle.	4	Students will learn the concept of free energy change in a chemical reaction, Distinction between ΔG and ΔG_0 , Le Chatelier's principles and relationships between K _p , K _c , and K _x for reactions involving ideal gases.	Lecture/ Discussion/ PPT/	nar/ Group Discussion/ Session/ nment
Chemical	2	Ionic Equilibria	10	Students will learn the strong, moderate and weak electrolytes, degrees of ionization, its factors affecting. ionization of weak acids and bases. pH scales, Buffer solutions, solubility and solubility products	Lecture/ Discussion/ PPT/	Quiz/Class test / Semi Q & A Assig

SECTION-B: ORGANIC CHEMISTRY-3

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Iydrocarbon	1	Preparation of aromatic compounds	3	The students will able to learn the preparation of aromatic compounds from phenol, acetylene, benzene sulphonic acid and by decarboxylation.	Lecture/ Discussion/ PPT/ Demonstration / Practical	nar/ Group Discussion/ Session/ nment
Aromatic Hydr	2	Electrophilic substitution reaction in benzene and Friedel-Craft's reaction	3	The students will understand the electrophilic reactions on benzene, Alkylation and acylation upto 4 carbons of benzene.	Lecture/ Discussion/ PPT/ Demonstration / Practical	Quiz/Class test / Semi Q & A Assig

Unit	Section	Topic	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
	1	Alkyl halide	3	The Students will be	Lecture and	It
des		(preparation and		able to know about	discussion	ner
ali		reactions)		the preparation and		ung
ΗI				reactions of alkyl		ass ssig
ИУ				halide		CI: VA:
√ p	2	Aryl halide	3	The Students will be	Lecture and	uiz/ nar
an		(preparation and		able to know about	discussion	n Mi
cyl		reactions)		the preparation and		Se
All				reactions of aryl		est
				halide		t

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
to	1	Alcohols	3	The Students will be	Lecture and	nt
dn		(preparation and		able to know about	discussion	ne
s (reactions)		the preparation and		Ing
ler				reactions of alcohols.		ssig
Etł	2	Phenols	2	The Students will be	Lecture and	/As
l pi		(preparation and		able to know about	discussion	nar
an boi		reactions)		the preparation,		imi
ols				reactions and name		'Se
s c				reactions of phenols.		est
Ph	3	Ethers (aliphatic	2	The Students get	Lecture and	ss to
ıls,		and aromatic)		exposed to the	discussion	llas
ohc				preparation of ether		z/C
lco				and cleavage of		Jui
A				ethers with HI.		0

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
	1	Aldehydes and	4	The Students will	Lecture,	
ф		Ketones (preparation,		understand the	discussion	_
an		name reactions and		preparation of	and	ss nar/ ent
les		their mechanisms)		carbonyl	practical	Cla mir
hyc eto				compound and		iz/(Sei igr
del K				their name		Qu sst/ass Ass
AI				reactions and		te t
				mechanism		

Recommended Books:

- 1. T. W. Graham Solomons: Organic Chemistry, John Wiley and Sons.
- 2. Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.
- 3. I.L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
- 4. R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall.
- 5. Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.
- 6. G. M. Barrow: Physical Chemistry Tata McGraw---Hill (2007). 15
- 7. G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004).

8. J. C. Kotz, P. M. Treichel & J. R. Townsend: General Chemistry Cengage Lening India Pvt. Ltd., New Delhi (2009).

9. B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998).

10. R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).

Course Teachers:

- 1. M. Lokendro Singh
- 2. Dr. K. Gayatri Sharma
- 3. Dr.Th. Brojendro Singh
- 4. N. Surjit Singh

HOD

Semester – IV (Year 2021-22 onwards) Core Course: CHEMISTRY-4 Paper Code: CHM-GE-4016

No. of Hours per Week	Credits	Total No. of Hours	Marks
6	04 (Theory)	60	75 (Theory)
4	02 (Practical)	30	25 (Practical)

Course Objective:

This course may be divided into two broad parts-physical and organic chemistry. In 1st part of this course students will be introduced to solutions, phase equilibrium and electrochemistry. The 2nd part contains carboxylic acid and derivatives, amines and diazonium salt and biochemistry.

Learning Outcome:

After completion of this course the students learn solutions, phase rule and its application in specific cases, basics of conductance and electrochemistry. Students will also learn some important topics of organic and biochemistry- carboxylic acids, amines, amino acids, peptides, proteins and carbohydrates.

Unit	Section	Торіс	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
Solutions	1	Thermodynamics of ideal solutions	6	The students will be able to understand and learn - Ideal solutions and Raoult's law, deviations from Raoult's law- non-ideal solutions. Vapour pressure- composition and temperature composition curves of ideal and non- ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids. Immiscibility of liquids. Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.	Lecture/ Discussion/ PPT/	Quiz/Class test / Seminar/ Group Discussion/ Q & A Session/ Assignment

SECTION-A: PHYSICAL CHEMISTRY-4

Unit	Section	Торіс	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Phase Equilibrium	1	Criteria of Phase equilibrium, Phase Rules and its thermodynamic derivations, phase diagrams of one- component and two- component systems	5	Students will learn the concept of Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems and two component systems	Lecture/ Discussion/ PPT/	Quiz/Class test / Seminar/ Group Discussion/ Q & A Session/ Assignment

Unit	Section	Торіс	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			Evaluation
Conductance	1	Conductivity, Kohlrausch law of independent migration of ions. transference number, applications of conductance measurements.	5	Students can understand the concept of conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes, kohlrausch law of independent migration of ions. Application of conductivity measurements, determination of degrees of ionization of weak electrolytes, conductivity titrations.	Lecture/ Discussion/ PPT/ Demonstration/ Practical	Quiz/Class test / Seminar/ Group Discussion/ Q & A Session/ Assignment

Electrochemistry	1	Reversible and irreversible cells, Concept of EMF of cells, Nernst equation, Potentiometric titrations - qualitative treatment.	6	The students will have the concepts of EMF of a cell, Types of electrodes, thermodynamics of reversible cell and also learn to calculate the thermodynamic properties: ΔG , ΔH and ΔS from EMF data. Liquid junction potential and salt bridge, pH determination, potentiometric titrations	Lecture/ Discussion/ PPT/ Demonstration/ Practical	Quiz/Class test / Seminar/ Group	Discussion/ Q & A Session/ Assignment	
------------------	---	---	---	--	--	----------------------------------	--	--

SECTION-B: ORGANIC CHEMISTRY-4

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
S	1	Preparation, physical	4	The Students will	Lecture,	
		properties and		understand the	discussion	It
live		reactions of		preparation of	and	ner
val		monocarboxylic		carboxylic acid and	practical	Sur
eri		acids		their name reactions		ssig
r d				and mechanism		/A:
hei	2	Dicarboxylic acids,	3	The Students will be	Lecture and	nar
1 (1		hydroxy acids and		able to know about the	discussion	imi
ano		unsaturated acids		preparation and		/Se
ds				reaction of unsaturated,		est
aci				hydroxy and di		ss t
ic a				carboxylic acid		Jlas
xyl	3	Specific Name	3	The Students get	Lecture and	Z/Z
poq		reactions of		exposed to different	discussion	Qui
ar		carboxylic acid		name reactions of		0
0				carboxylic acids		
	1	Amines (aliphatic	3	The Students will be	Lecture,	
		and aromatic)		able to know about the	discussion	leni
lts		preparation and		preparation amines	and	uu
I Sa		reactions		from alkyl halides,	practical	sig
m				Gabriel's Phthalimide		As
ni				synthesis and and		ar/
azo				Hofmann Bromamide		nin
Di				reaction.		en de
pu	2	Diazonium salts	2	The Students will be	Lecture and	st/S
s a		(preparation and		able to know about the	discussion	; te
ine		reactions)		preparation of		ass
, m				Diazonium salts from		/CI
A				aromatic amines and		uiz
				conversion to benzene,		Ō
				phenol, dyes.		

Unit	Section	Торіс	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
	1	Amino acids	3	The Students will	Lecture,	
q				understand different	discussion	
an				types of amino acids	and	ant
les				and their synthesis and	practical	me
tid				characteristics		ign
Pep ins	2	Peptides	3	The Students will be	Lecture and	las
s, J ote				able to know about the	discussion	ar//
Pr				synthesis of peptides		jui iin
Y	3	Proteins	2	The Students get	Lecture,	em
ino				exposed to the	discussion	st/S
m				preparation and	and	tes
A				application and types of	practical	
				protein		

Recommended Books:

1. G. M. Barrow: Physical Chemistry Tata McGraw---Hill (2007).

2. G. W. Castellan: Physical Chemistry 4th Ed. Narosa (2004).

3. J. C. Kotz, P. M. Treichel, J. R. Townsend, General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi (2009).

4. B. H. Mahan: University Chemistry, 3rd Edn. Narosa (1998).

5. R. H. Petrucci, General Chemistry, 5th Edn., Macmillan Publishing Co.: New York (1985).

6. Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

7. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 8. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 9. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman.

10. Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 7th Ed., W. H.

Course Teachers:

- 1. M. Lokendro Singh
- 2. Dr K. Gayatri Sharma
- 3. Dr K. Inaomacha Singh

4. N. Surjit Singh

HOD.....